Page 1 of 2

10.	The equation of a line $\frac{x}{P \sec \alpha} + \frac{y}{P \cos ec\alpha} = 1$ is called:	Symmetric equation of a line	Two intercept form of a line	Slope intercept form of a line	Normal form of a line
11.	For what value of k the lines $kx - 2y + 5 = 0$ and $x - 2ky + 3 = 0$ are parallel line?	3	±1	O 2	○ ±2
12.	The equation of the vertical line through $(-6,5)$) –5	<u> </u>	O 5	<u>6</u>
13.	Which one satisfies the inequality $x+2y<6$	(4,1)	(1,3)	(1,4)	(3,1)
14.	What is the length of tangent from (1,1) to the circle $x^2 + y^2 - 2x + 3y + 6 = 0$?) 1	2 .		<u> </u>
15.	What is the eccentricity of an ellipse $\frac{x^2}{16} + \frac{y^2}{4} = 1$	$) \frac{1}{\sqrt{3}}$	$\bigcirc \ \frac{2}{\sqrt{3}}$	$\bigcirc \frac{\sqrt{3}}{2}$	○ √3
16.	What is the length of latus rectum of the hyperbola whose equation is $\frac{x^2}{16} - \frac{y^2}{9} = 1$?) 2/9	$\bigcirc \frac{9}{2}$	$\bigcirc \frac{4}{9}$	$\bigcirc \frac{9}{4}$
17.	What is the Directrix of Parabola with vertex		x-8=0	x+4=0	
18.	What is the projection of vector $-2\hat{i} + 3\hat{j} + 7\hat{k}$ on $2\hat{j} + \hat{k}$?	$\frac{\sqrt{13}}{5}$	$\bigcirc \frac{13}{\sqrt{5}}$	$\bigcirc \frac{5}{\sqrt{13}}$	$\bigcirc \frac{\sqrt{5}}{13}$
19.	What is the angle between the vectors $2\overline{i} + \overline{j} + \overline{k}$, $-\overline{i} + 2\overline{j}$ are?	$\frac{\pi}{3}$	$\bigcirc \frac{2\pi}{3}$	$\bigcirc \frac{\pi}{6}$	$\bigcirc \frac{\pi}{2}$
20.	For what value of α the vectors $2\overline{i}$, $\overline{j} + \overline{k}$ and $\overline{i} + \alpha \overline{j} + 2\overline{k}$ are coplanar?) -2	<u>2</u>	<u>3</u>	<u></u> −3
	49		2	de a constant de la c	

----2HA-I 2211-4111 (L) -----

ROLL NUMBER								
		4						

MATHEMATICS HSSC-II

32

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

NOTE: Attempt any twelve parts from Section 'B' and any four questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet–B if required. Write your answers neatly and legibly. Graph paper will be provided on Demand.

SECTION - B (Marks 48)

Q. 2 Attempt any TWELVE parts. All parts carry equal marks.

 $(12 \times 4 = 48)$

- (i) For the real valued function, f(x) is defined by $f(x) = \sqrt{x^3 + 4}$ find $f^{-1}(x)$. Also verify $f(f^{-1}(x)) = x$
- (ii) Evaluate $\lim_{x\to 0} \frac{\csc x \cot x}{x}$
- (iii) If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x} +\infty}}$ prove that $(2y 1)\frac{dy}{dx} = \cos x$
- (iv) Show that $\sin(x+h) = \sin x + h\cos x \frac{h^2}{2!}\sin x \frac{h^3}{3!}\cos x + \dots$ (by Taylor's Series)
- (v) If $y = \sin^{-1} \frac{x}{a}$ then show that $y_2 = x(a^2 x^2)^{-\frac{3}{2}}$
- (vi) Evaluate $\int \frac{dx}{3x(\ln 3x)^4}$
- (vii) Evaluate $\int_{0}^{3} \frac{x^3 + 9x + 3}{x^2 + 9} dx$
- (viii) Solve the differential equation $\frac{dy}{dx} + \frac{4xy}{4y+2} = x$
- (ix) Find an equation of the perpendicular bisector of a line joining the points A(5,6) and B(8,4).
- (x) Find the value of k such that the lines 2x-2y+2=0, 3x-5y-1=0 and 2x+ky+8=0 meet at a point.
- (xi) Graph the feasible region of the system of linear inequalities by shading $5x + 7y \le 35$, $-x + 3y \le 3$, $x \ge 0$, $y \ge 0$
- (xii) Find the equation of a circle passing through the points A(2,3), B(0,2) having centre at 3x+2y-3=0
- (xiii) Find the equation of Parabola with focus (3,2) and directrix 2x y + 5 = 0.
- (xiv) Find the equation of tangent to hyperbola $9x^2 4y^2 = 36$ parallel to the line 3x + 2y + 7 = 0
- (xv) Find the scalar ' α ' so that vectors $3\overline{i} + \alpha \overline{j} + 4\overline{k}$ and $4\overline{i} + 5\overline{j} + \alpha \overline{k}$ are perpendicular to each other.
- (xvi) Find the volume of the tetrahedron whose vertices are A(-2,1,4), B(3,2,5), C(-3,-5,0), D(5,8,9)

Page 1of 2 (Mathematics)

Note: Attempt any FOUR questions. All questions carry equal marks.

 $(4 \times 8 = 32)$

Q. 3 Let $f(x) = \begin{cases} mx + 3 & \text{if } x < 3 \\ m + n & \text{if } x = 3 \\ -x + 9 & \text{if } x > 3 \end{cases}$

- a. Find $\lim_{x\to \bar{3}} f(x)$ and $\lim_{x\to 3} + f(x)$
- b. Find the $\lim_{x\to 3} f(x) = f(3)$
- c. Find the value of m and n such that f(x) is continuous at x=3
- d. After finding the values of m and n, sketch the graph of the function
- Q. 4 The perimeter of a triangle is 18 centimetres. If one side is of length 8 cm. What are lengths of the other sides for maximum area of a triangle?
 - a. Find function f(x)
 - b. Find f'(x) and f''(x)
 - c. Find the values of f(x) for which has maximum or minimum values?
 - d. Find the sides of triangle ABC
- Q. 5 Evaluate the integral $\int \frac{2x^2 + 5x + 3}{(x-2)^2(x^2 + x + 1)} dx$
 - a. Resolve $\frac{2x^2 + 5x + 3}{(x-2)^2(x^2 + x + 1)}$ into Partial fraction
 - b. After Partial Fraction Integrate the result $\int \frac{2x^2 + 5x + 3}{(x-2)^2(x^2 + x + 1)} dx$
- **Q. 6** The diagram shows a triangle ABC where A(-2,3), B(4,5), C(6,2) are vertices of $\triangle ABC$
 - a. Find the slopes of side \overline{AB} , \overline{BC} and \overline{AC}
 - b. Find the angle between the sides \overline{AB} and \overline{BC} and angle between \overline{AB} and \overline{AC}
 - c. Find the equations of sides \overline{AB} and \overline{BC}
 - d. Find the area of triangle ABC check these three points are collinear A(-2,3)

B(4,5)

- Q. 7 An agent wishes to purchase a number of chairs and tables. He has only Rs. 12000 to invest and has space at most for 28 items. A chair costs him Rs. 480 and a table costs Rs. 300. His expectation is that he can sell a chair at a profit of Rs. 200 and table at a profit of Rs. 150. Assuming that he can sell all the items that he can buy. How should he invest his money in order to maximize his profit?
- Q. 8 Find the Centre, Foci, Eccentricity, Vertices and Equation of directrices of the conic $25x^2 + 4y^2 250x 16y + 541 = 0$